
APPENDIX F

An Overview of the PDP Software

In this appendix we provide a brief description of the PDP software,
focusing particularly on the user interface and the data structures used by
the programs. This description stands in lieu of detailed comments in the
source code itself. We assume familiarity with the C programming
language, as described in Kernighan and Ritchie (I 978). Descriptions of
the core routines that define each model are given in the appropriate
chapter of the book.

Command and Variable Tables

The user interface is built around a table called the command table, in
which each command string that the user might enter is stored. The com­
mand table contains the name of the command, the menu it is in, a pointer
to a function to run if the command is entered, and a pointer to an argu­
ment to give to the command. The function do_command takes the com­
mand entered on the keyboard, searches through the table until it finds a
match that is in the current menu, then executes the function associated
with the command. If the command is the name of a menu of subcom­

mands, then the function that is executed is do_command again, with its
argument being the menu associated with the command. When the pro­
gram is initialized, a number of commands are installed in the command
tables, generally in functions whose names begin with init_.



322 APPENDIX F. AN OVERVIEW OF THE PDP SOFTWARE

There is also a variable table. Each entry in the variable table begins
with a string that is used as the name for the variable. This string is used
for accessing the variable from the user interface and does not need to be
the same as the symbolic name used by the programmer in the program
itself. Each entry also contains a variable type identifier and a pointer to
the variable. The types include scalar variables (characters, integers, and
floating-point numbers), strings (sequences of characters), vector variables
(vectors of integers, floats, and strings) and matrix variables (here treated
as lists of vectors of either integers or floats). For vector variables, there is
an entry specifying the length of the vector. For matrix variables, there is
one entry specifying the length of the list of vectors and another entry
specifying the length of each vector. There is also a special type of variable
called a weight-matrix variable, which will be described specifically later on.

Part of the initialization process involves installing variables as well as
commands. Actually, when a variable is installed in the variable table, it is
also installed in the command table, generally in the set/ menu or a sub­
menu of that menu. For example, the variable nupdates in the cs program
is installed as a command in the set/ menu. This command, when exe­
cuted, calls the function change_variable with an argument that is a pointer
to the table entry for nupdates in the variable table. The change_variable
function, in turn, calls a function appropriate for the particular type of vari­
able, as determined from the value of the type field of the entry for
nupdates.

The Template List

In addition to the command and variable tables, there is also a template
list. The template list has in it an entry for each template encountered in
the .tem file; these entries are installed as the template file is read. Each
template list entry has a string that is the external name by which the tem­
plate can be assessed by the user, a specifier indicating what type of tem­
plate this is (e.g., vector, matrix, label_array, etc.), a pointer to the variable
associated with the template (this variable must be installed in the variable
table before the template can be used), and a large number of other vari­
ables specifying the parameters of the template, including its screen loca­
tion, display level, and so on. Once the templates are installed, they govern
the process of displaying information in the display area, either when the
update_display routine is called or when the user issues a command to
display a particular template, as when using the disp/ command; each tem­
plate name is in fact installed in the command table in the disp/ menu, with
a pointer to the associated entry in the template list as the argument. Each
template is also installed in the disp/ opt/ menu, so that some of the
parameters associated with the template can be modified by the user during
running.



APPENDIX F. AN OVERVIEW OF THE POP SOFTWARE 323

Matrices as Lists of Pointers to Vectors

Most of the variable types used in the programs are very standard, but
two are somewhat special in the way we have implemented them. Matrices
are not implemented in the standard way as two-dimensional arrays, but as
lists (or vectors) of pointers to vectors. The entry aliJOl refers to the jth
entry in the ith vector, and, in cases where ~he vectors are all the same
length, this notation is functionally equivalent to a conventional two­
dimensional array. Weights, however, are stored in lists of pointers to vec­
tors, in which the length of the vectors need not always be the same.

Indeed, the weight arrays are built around the idea that the vector of
weights associated with each receiving unit need only be as long as the
number of units that project to it. I To implement this, there are special
arrays calledfirst_weighuo and num_weights_to. These list the first unit that
projects to each unit and the number of units that project to it. To the
user, the connection to unit i from unit j is thought of as weight!ilOl, but
internally it is stored in the element j - first weight to!il of the vector
weight!il, and so its true index is weight!ilO - i;st_weighuo!ilJ. We stress
that from the user's point of view, a particular weight is indexed just as it
would be in a full two-dimensional array.

The first_weight_to and num_weights_to arrays are determined by the %
specifications found in the network specification files. When no % specifi­
cation is given, the program sets first_ weight_to to 0 for each unit and sets
num_weights_to to nunits; thus the weight array in this case is functionally
equivalent to a two-dimensional array. The only proviso is that the vectors
of weights are not necessarily contiguous.

Extensive Use of Malloc

All of the programs can be configured for networks of arbitrary size and
connectivity, limited only by the total available memory in the user's com­
puter. Likewise, the number of variables, patterns, templates, and com­
mands are arbitrary. This is achieved by using the function mal/oc to allo­
cate memory for the various tables, vectors, and lists of pointers to vectors.
Initially, many of these data structures are given an arbitrary, reasonable
length (e.g., the command table is initially set up for 100 commands). If
more entries are needed, a larger number of entries is allocated, the exist­
ing entries are copied into it, and the old list of entries is freed for later
reallocation. Many of the data structures used by the program cannot be

I Actually, num_weights_to is equal to the number of units from the first unit that projects to
the receiver to the last one that projects to it; there could be null weights between the first
and the last, but such null weights have entries in the weight vector.



324 APPENDIX F. AN OVERVIEW OF THE PDP SOFTWARE

allocated until the network configuration has been defined. For this reason,
the programs all have a routine called define_system, which is called when
the user enters a command that initiates processing. Once called, a variable
called System_Defined is set to 1, indicating that define_system does not need
to be called again.

An Overview of the Structure of the Programs

Each program consists of a set of basic parts, each found in a separate
file. The core of each program is located in a file whose name is the name
of the program followed by .c; thus the guts of bp is in bp.c. These core
files contain the routines that define the actual computations performed by
the model and that compute statistics relevant to the model (e.g., goodness,

harmony, or tss). The other parts are shared by most or all the programs.
One part is concerned with the installation of commands and the routines
that read commands and execute the appropriate functions as a result; it is
located in the file command.c. Another part is concerned with the installa­
tion of templates; it is located in the file template.c. The file display.c con­
tains the routines used to display the templates. The file variable.c contains
functions relevant to the installation and modification of the entries in the
variable list. The weights.c file contains routines for reading network
specification files and for reading and writing weights to files. The file
patterns.c contains routines for reading patterns and pairs of patterns into
the program. The io.c file contains low-level (largely machine-dependent)
functions for actually reading characters entered by the user and displaying
characters on the screen, and general.c contains some low-level utility func­
tions of general use. Finally, the file main.c contains the main function.
This simply calls a number of initialization functions and then calls
do_command, which first processes the .str file and then processes com­
mands entered from the standard input by the user.


